
Reusable Templates in Human Performance Modeling

Michael Matessa1, Alonso Vera1, Bonnie John2, Roger Remington1, and Michael Freed1

({rremington, mmatessa, avera, mfreed}@arc.nasa.gov)

1Cognition Laboratory, Mailstop 262-4, NASA Ames Research Center
Moffett Field, CA 94035 USA

2School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

Current computational modeling of human performance
can benefit from reusable building blocks of human
behavior. Using CPM-GOMS, a cognitively-based task
analysis method used in HCI, we have been exploring
the concept of reusable templates of common behaviors
and their efficacy for generating zero-parameter a priori
predictions of complex human behavior. This paper
details the features we believe are important when
moving from hand-crafted models of particular tasks to
reusable building blocks of commonly occurring
behavior. As this becomes common practice,
proportionately more attention can be paid to the task
analysis specific to each new domain.

Introduction
To model human behavior successfully one needs to be
able to decompose a complex task into a set of
primitive operations to which performance parameters
may be assigned. These primitives represent the
building blocks from which behavior will be
constructed such that performance can be predicted for
entire task sequences. Thus, the choice of primitives
and the method of combining them to construct larger
behavior sequences are critical if performance estimates
are to be at all accurate. In this paper, we describe a
method for combining basic cognitive, perceptual and
motor operations into larger behavioral units. These
larger units, which will be referred to as templates, are
applications of psychological theory about the
perceptual, motor and cognitive process underlying
human performance. Two main points will be argued:
1) task-level reuse is important and 2) behavioral
templates are a good way to achieve this reuse. We will
present data for a simple HCI task and describe the
templates we borrowed (reused) to model it.

Model reuse is a profitable avenue to explore for four
reasons. First, consider mousing to a button and
clicking on it as an example. People learn and use this
skill in most interactions with computers. A model of
mousing and clicking on a button should be applicable
to many HCI tasks; a new model of mousing and
clicking on a button should not be built from scratch for
each new task. Second, reuse provides expertise beyond

a single researcher. That is, the model for mousing and
clicking on a button can be built by researchers with
expertise on visual/motor behaviors and the complex
model-builder can benefit from that expertise. Third,
reuse provides external verification of the component
models. If the model for mousing and clicking on a
button predicts the behavior well in the context of a
complex task, the data provides an independent test of
the mechanisms of that model. Finally, reuse provides
additional constraint on models of complex tasks. If the
mousing and clicking on a button model predicts the
behavior well, the HCI modeler should not change the
basic mechanisms of the model simply to make it work
in a new domain.

Cognitive architectures such as ACT-R (Anderson &
Lebiere, 1998) and Soar (Newell, 1990) embody a large
set of reusable constraints on behavior prediction.
These, however, are mostly at the cognitive level rather
than at a task level. We know how to reuse
architectures but not content. Modeling performance
on human-computer interaction (HCI) tasks is valuable
but currently suffers from several problems. Models of
task performance need to be handcrafted and typically
take a long time to be created. Neither whole models
nor their component parts tend to be reused, allowing
little transfer of code from one task model to the next. It
is difficult to incorporate psychological knowledge into
models and cognitive/psychological expertise is needed
to do so. Once a model is complete, it may be
uninformative with respect to a next attempt at
modeling.

Other disciplines that build complex systems, like
engineering and computer science, have successfully
employed reuse as an approach to tame complexity and
this is an approach that cognitive science should
explore as well. There have been numerous arguments
about the benefits of using a unified cognitive
architecture to provide power, structure and constraint
(e.g., Anderson, 1983; John & Altmann, 1999; Newell,
1990), but fewer efforts to incorporate previously-built
models of generalized capabilities into models of more
complex tasks (e.g., Nelson, Lehman & John, 1994).

Cognitive Modeling Methods
Cognitive architectures such as ACT-R and Soar have
attempted to solve some of these problems. Underlying
mechanisms embody the psychological theories of the
architectures, and so the theories do not have to be
explicitly coded for each model. Attempts have been
made to reuse models at the task level, but in general
this is not a widely adopted practice (e.g., John &
Lallement, 2000; Nelson, Lehman & John, 1994). As a
result, models are mostly handcrafted and take a long
time to create.

The field HCI uses cognitive models in several ways.
It often is less interested in the process of modeling
than in getting results quickly, and has therefore put
emphasis on modeling frameworks that are easier to
learn and use than the more complex cognitive
architectures like Soar and ACT-R (John, 1998). In
addition, that field has sought modeling procedures that
reuse actual pieces of models as well as the framework.
For instance, GOMS models (Card, Moran & Newell,
1983) are constructed by hierarchical goal
decomposition with reusable, empirically-determined
execution times assigned to particular goals.

The GOMS methodology has proven highly
successful in predicting task completion times for
skilled users in routine human computer interaction
(HCI) tasks (e.g., Gray, John, & Atwood, 1993; John,
Vera, & Newell, 1994). GOMS is really a family of
analysis techniques in which performance predictions
emerge by combining a task decomposition with
estimates of completion times for steps in the
decomposition. The task decomposition produces a
representation of the task as a set of nested goal states
that include an initial state and a final goal state. The
user is assumed to move from one goal state to another
by applying operators that represent actions, such as
moving a mouse or reading a word. The set of nested
goal states often resembles a hierarchy, but need not
form a strict hierarchy. The iterative decomposition into
goals and nested subgoals can terminate in leaf nodes
(primitives) of any desired granularity, the choice of
level of detail dependent on the predictions required.
Times are assigned to the operators that transition
between goal states, with additional times often
assigned to subgoal completion (Kieras, 1994). Since
GOMS is meant to model routine behavior, the user is
assumed to have methods that apply sequences of
operators and subgoals to achieve a goal. Selection
rules are applied when there is more than one method to
achieve a goal.

The CPM-GOMS extension to GOMS (John, 1990)
adds psychological knowledge to the GOMS goal
decomposition by expressing common HCI tasks (e.g.
reading from a screen, typing) as patterns of Model
Human Processor (MHP; Card, Moran & Newell, 1983)
operations of its cognitive, perceptual, and motor
processors. These patterns, or templates, can help
cognitive modeling by grouping psychological

knowledge into reusable chunks that can be organized
into larger behavioral sequences. Although approaching
modeling with reusable templates has been taught for a
decade (John & Gray, 1992), it has not become
widespread, possibly because CPM-GOMS was not in
computational form (it had to be done by hand by
drawing PERT charts) until recently (John, Vera,
Matessa, Freed & Remington, 2002).

Template Structure
Templates are reusable applications of psychological
theory that describe short behavioral sequences.
Thirteen templates were offered to CPM-GOMS
modelers in tutorials and classes in the early 1990s
(John & Gray, 1992) and others have been added since
then. One example of a CPM-GOMS template for
mouse clicking (created by Gray & Boehm-Davis,
2000) can be seen in Figure 1. The template
incorporates a psychological theory of the cognitive,
perceptual, and motor components of mouse clicking
and dependencies between these components. The
template was developed in the context of a simple task
of clicking on lit circles, but has successfully been
reused in the context of clicking to operate a simulation
of an automated teller machine (John, et al., 2002).

Figure 1: Model of carefully moving the cursor to a
target and clicking the mouse button (adapted from

Gray & Boehm-Davis, 2000).

The psychology in this template is in the form of the
durations, the cognitive bottleneck, the logical
dependencies, and the task dependencies. The
durations for the cognitive, perceptual, and motor
components of the template are empirically derived
MHP-level estimates of these activities. CPM-GOMS
assumes a cognitive bottleneck, where cognitive
processes cannot execute in parallel. The cognitive
resource stream is therefore serially scheduled based on
the logical and task dependencies as described below.

According to CPM-GOMS, each motor activity must
be preceded by a cognitive activity that initiates it. This
is an example of a logical dependency — a motor action
cannot take place unless a cognitive motor initiation
activity has occurred. That you cannot click on a target

initiate-move-
cursor

 perceive-
target

290

0

 attend-
target

50
 initiate-

POG

50
 verify-

target
pos

50

move-
cursor

182

POG

30

 mouseDn

100

 initiate-
mouseDn

50

mouseUp

100

new-cursor-location

 perceive
 cursor
 @target

100

50
verify

 cursor
@target

50
attend
cursor

@target

50

until you have moused over to it is an example of a task
dependency . It is not a CPM-GOMS level logical
dependency nor is it a necessary consequence of the
cognitive bottleneck; it is true because the task requires
it to be so. So, for example, a possible performance
error might be to click before the mousing movement to
the target is complete. In contrast, executing a motor
action without a preceding cognitive initiation is not a
possible performance error. Similarly, executing two
cognitive activities in parallel is not a possible
performance error. This combination of constraints
embodies the unique application of psychological
theory to the crafting of each template.

Interleaving Templates
Embodying psychological theory in separate templates
is only the first step. The challenge is that CPM-GOMS
templates need to be interleaved to fully capture the
time course of behavior. Simply adding up the
performance time predicted by a sequence of templates
produces a time that is longer than that of human
performance. A key CPM-GOMS assumption is that
humans are able to perform certain components of the
templates not in strict sequence but interleaved so that
some components of a later template can occur in an
earlier template.

A concrete example of this interleaving can be seen
in a task as simple as hand-washing. While most eye
fixations are related to immediate actions such as
turning on the faucet, a small number are made to
objects relevant only to future actions. Pelz and Canosa
(2001), with the aid of an eye tracker, observed that
subjects consistently made eye movements to the towel
during earlier parts of the hand-washing process.

Part of the psychological theory embedded in
templates is the knowledge of what components of one
template can occur in parallel with components of
another template. This interleaving theory has until
recently only been implemented in paper-and-pencil.
Details of how interleaving is implemented in our
system are presented later. When cognitive components
have a dependency on perceptual or motor components
which take a relatively long time to complete, slack
time may occur when the cognitive resource is not
being used. Interleaving involves filling up this slack
time with activity from the cognitive components of the
next template.

ATM Study & Data
CPM-GOMS has been demonstrated to make accurate
zero-parameter a priori predictions of skilled HCI
behavior. Using templates, we created a CPM-GOMS
model of a simple HCI task — withdrawing money from
an ATM. We gave two users extensive practice with
this task because CPM-GOMS models are expected to
predict the performance of highly-skilled users (Baskin
& John, 1998).

The ATM Task
The task was to make an $80 withdraw from a checking
account on a Visual Basic simulation of an automated
teller machine. Users interacted with the ATM by
using a mouse to click on simulated keys or slots. The
users were instructed to follow the following steps:

 Insert card (click on the picture of the card slot)
 Enter PIN (click on the 4, 9, 0, and 1 buttons in turn)
 Press OK (click on OK button)
 Select transaction type (click on withdraw button)
 Select account (click on checking button)
 Enter amount (click on 8 and 0 buttons)
 Select correct/not correct (click on correct button)
 Take cash (click on the picture of the cash slot)
 Select another transaction (click on No button)
 Take card (click on the picture of the card slot)
 Take receipt (click on the picture of the cash slot)

This task was repeated 200 times by the users. This
level of practice is comparable to that used by both
Card, Moran, and Newell (1983) in a text editing task
and Baskin and John (1998) in a CAD drawing task
when they explored the effects of extensive practice on
match to various GOMS models.

0

200

400

600

800

1000

1200

1400

C
ar

d
S

lo
t 4 9 0 1

O
K

W
ith

d
ra

w

C
he

ck
in

g 8 0

C
o

rr
e

ct

C
as

h
S

lo
t

N
o

C
ar

d
S

lo
t

C
as

h
S

lo
t

T
im

e
(m

s)

S1- Mean for Trials 91-100
S2- Mean for Trials 91-100
CPM-GOMS Model
Fitts's Law
No-Interleaving Model

Figure 2: Click times for users and models

The CPM-GOMS Model
The CPM-GOMS model was created by first expressing
the hierarchical goal structure of the ATM task. At the
bottom of the hierarchy were two CPM-GOMS
templates: Slow-Move-Click and Fast-Move-Click.
The cognitive, perceptual, and motor components of
these templates were taken directly from Gray and
Boehm-Davis (2000) where predictions from these
templates were compared to data from several
variations of a simple target selection task.

The Slow-Move-Click template is shown in PERT
chart form in Figure 1. Because there was uncertainty
about where a target would appear in each trial, Gray
and Boehm-Davis considered Slow-Move-Click to
represent a careful selection of a visible target. Fast-

Move-Click represented a more confident selection of a
target when the user knew where the target was to
appear. In our model, we choose to use Fast-Move-
Click for clicking on the ATM buttons because they
were a reasonable size and Slow-Move-Click for
clicking on the card and cash slots because these slots
were thinner and difficult to hit unless the user was
careful.

Comparing the Model to Data
Figure 2 shows a comparison of the CPM-GOMS
model predictions of mouse click times and mean user
click times. Because Baskin and John (1998) have
found that CPM-GOMS models predict behavior well
at around the 100th trial of a practiced procedure, the
means of trials 91-100 for each ATM user are shown.
To see the benefit of interleaved templates, predictions
from two other models are also shown: a model using
only Fitts s Law predictions (a motor time prediction
based only on target geometry), and the CPM-GOMS
model with sequential templates but no interleaving.

The first thing to notice is the good a priori fit of the
model to user data. The degree to which interleaving
contributes to this fit can be seen by comparing the
interleaving and non-interleaving models. The non-
interleaving model generally predicts a longer time for
a mouse click and does not capture the variation of user
click times. This variation is better captured by the
Fitts s Law only model, but the model does not
represent the perceptual and cognitive processes
incorporated into templates and so predicts faster click
times than users produce. These comparisons show that
templates contain important predictions of perceptual,
cognitive, and motor processes, and that the theory of
template interleaving can capture the abilities of users
to save time by performing parallel processes.

The important point to emphasize is that the
templates used to make these predictions were
developed for a very different task and were
successfully reused in the present model. Also, note that
the tool we have developed to implement CPM-GOMS,
Apex (Freed, 1998b, Freed & Remington, 2000), allows
us to easily generate alternative versions of the model
(e.g., just Fitts s Law, templates with no interleaving).
We will expand on the workings of the tool below.

Implementing Templates
How does an organism organize its resource allocation
over an extended period of time over an extensive
sequence of behaviors? Hierarchical task
decomposition is a convenient formalism for an analyst
to record and communicate their analysis of a task but it
also seems to have some psychological reality in how
people organize their environment and cognitive
resources to approach a complex task. Many
representations of human behavior use hierarchical task
decomposition, from Scientific Management at the turn
of the century, to HTA (Kirwan and Ainsworth, 1992)

to GOMS, Soar and ACT-R. However, in these latter
architectures, the hierarchical task decomposition
bottoms out at the level of operations of the underlying
cognitive, perceptual and motor processors.

It is relatively easy to perform a hierarchical task
analysis for each new task domain, and necessary
because each domain has its own objects, tasks,
knowledge, and procedures. It is much more difficult to
describe the cognitive, motor, and perceptual processes
underlying every new task. However, many tasks
bottom out at the same component behaviors
constrained by human abilities. The component
behaviors are actions like visual search, mouse
movements, and typing. These types of actions are
perfect candidates for re-use because they occur
repeatedly in many tasks, and must be realized in
operations closer to the architecture than is necessary to
describe the task domain. Removing the burden of
understanding and programming in the underlying
cognitive architecture in the form of reusable templates
could make cognitive modeling more accessible to a
wider range of domain experts.
What does it take to create templates in a cognitive
architecture?

• A systematic relationship between the bottom level
of the hierarchical task decomposition, the
templates, and their realization in the underlying
architecture

• A systematic relationship at the boundaries
between templates realized in the underlying
architecture. This may be more complicated than
simple serial execution, as we will describe in the
context of CPM-GOMS, the Model Human
Processor, and its embodiment in Apex.

Template Grain Size
Generalizeable behavior templates should exist at
different grain sizes. From a practical modeling
perspective, it is valuable to represent basic HCI
behaviors in different size chunks. For example, one
branch of a hierarchical goal decomposition may
terminate at simply clicking on an item whereas another
might terminate at a more complex action such as
choosing an item from a pull-down menu. The latter
action encompasses the first (twice, in fact), but both
are useful as separate templates. Along with
generalizability, a valuable constraint on the grain size
of templates is the level at which hierarchical goal
decomposition would bottom out. For example, a
template that is just the reaching component of typing a
key (i.e., putting your finger over it without pressing on
it) would be very general; it would be Fitts s Law plus
the associated cognitive and perceptual components.
However, it would not typically be where a hierarchical
goal decomposition would bottom out. A hierarchical
goal decomposition is more likely to bottom out with
activities such as click-on-button or press-key than just

the reaching component of these activities, and
templates should reflect this.

Implementing Interleaving
The template-builder gets to deliberately program these
dependencies. The relationship between templates in
CPM-GOMS involves not sequencing, but interleaving
of parallel operators on multiple resources. In highly
skilled behavior, people attain a high degree of
parallelism in their behavior. To illustrate this point,
think about printing a document in the word processor
you regularly use. It is not uncommon for people to
select the Print command then move the mouse to the
place where the OK button will appear well before
the dialog box is visible. A hierarchical task analysis
would list the steps (1) select Print , (2) wait for
dialog box, and (3) click on OK , but the realization in
the underlying architecture should allow the mouse
movement associated with step (3) to precede the
completion of step (2), whereas the clicking associate
with step (3) must indeed wait for the completion of
step (2) or the task will not be successfully completed.
Thus, the relationship between templates is a complex
system of interleaving of the architectural-level
operations.

Apex allows manipulation of serial and parallel
resource in exactly the form required by CPM-GOMS.
Apex (Freed, 1998a) has a flexible resource
management system that allowed the implementation of
the constraints necessary to produce CPM-GOMS
template interleaving. A complete description of the
implementational rules guiding interleaving in CPM-
GOMS as embodied in Apex is available elsewhere
(Berkovich & Kwong, 2002; John et al., 2002). In
general, we use three facets of the Apex architecture:

1. resource modules (i.e., cognition, hands, point of
gaze, visual perception),

2. priorities on the templates, and
3. virtual resources to record a template s intention

to use a resource.
Resource modules. To accomplish templates,

operators consume resources at the architectural level.
The resource modules act serially within themselves, so
when they are occupied by an operator, other operators
that require that resource must wait until that resource
is free again. When more than one operator requires the
same resource at one time, there needs to be a way to
resolve the conflict and assign that resource to only one
operator. Within a template, such conflicts are either
avoided because of logical dependencies between the
operators (e.g., perceiving a target cannot happen until
the eyes have moved to that target) or resolved
randomly because the template-builder has determined
that it does not matter for the completion of the task
whether one goes before the other. When there is
contention for resources between operators in different
templates, an additional mechanism for conflict
resolution is needed.

Priorities. When there is competition for a resource
between templates, priorities of the templates is used.
Each template is assigned a priority associated with its
order in the hierarchical task decomposition. In the
printing example above, selecting the Print command
(step 1) has the highest priority, waiting for the dialog
box (step 2) has the next highest priority, and clicking
the OK button (step 3) has the lowest priority. Both
steps 1 and 3 will contend for the right hand to move
the mouse to their respective targets, and step 1 will
win by its priority, ensuring that the print command is
selected before the mouse is moved to where the OK
button will appear. However, step 2 (waiting) does not
require the right hand, so the mouse is free to move to
the location of the OK button before the dialog box
appears.

Virtual resources. However, resources and priorities
are not enough. For instance, the template to select the
print command (step 1) requires the eyes to move to
and perceive the menu title, and later within the same
template to move to and perceive the desired menu
item. However, while the hand is completing the move
and click to the menu title and the menu is coming up,
the eye resource is free. Therefore, step 3, clicking on
the OK button wants the eye to move to the location of
the OK button, and since the resource is free, there is no
contention and priorities do not come into play. Thus,
the eye resource could be assigned to the OK button
even though the menu item will be appearing in a
fraction of a second and the eye will be needed there.
Therefore, to reserve the eye for the higher-priority
template (in this case, the select-menu-item(Print)), we
developed the idea of virtual resources. Virtual
resources are analyst-defined entities that act like
regular resources. Operators consume these resources
and they have to be allocated using priorities. So at the
beginning of the select-menu-item (Print) template s
first eye movement, it reserves the eye-block virtual
resource and only releases that virtual resource after its
last visual perception is complete. Since all eye-
movements and visual perception require this eye-block
virtual resource, this technique blocks any lower-
priority template from stealing that resource before a
higher-priority template is finished with it.

Discussion
We have a computational system that implements and
automatically interleaves reusable behavioral templates.
While only two templates have been presented here in
detail (Slow-Move-Click and Fast-Move-Click), several
others have been implemented in our system for touch-
typing and applied to a different computer aided design
task, and several more are under development for
interacting with the flight maintenance system found on
commercial airliners. Previous work has shown that
other currently existing templates in the literature are
useful for simulations done by hand (Gray, John, &

Atwood, (1993) being a good example). We will work
to implement these as well. As more templates are
accumulated, issues such as coverage of possible
behaviors can be addressed. It is important to note that
the data presented here for the ATM task are not
intended as a verification of CPM-GOMS as a whole
(see John et al.,, 2002, for an overview of empirical
work supporting the predictive power of CPM-GOMS)
but rather as a demonstration of the fit of two borrowed
templates, implemented and interleaved in Apex, to a
new task.

In order for cognitive modeling to come into wider
use in the design process, it is necessary to package the
abundance of data on human perceptual, cognitive, and
motor phenomena into a set of behavioral building
blocks that can be directly incorporated into predictive,
computational models. CPM-GOMS provides a good
set of cognitive constraints allowing the creation of pre-
bundled HCI behaviors and Apex provides a good
platform for the implementation of CPM-GOMS. The
use of templates within a system that automatically
interleaves them into longer sequences of complex HCI
behavior reduces the amount of psychology and
modeling knowledge required to build models, allowing
the modeler to focus on task analysis.

Acknowledgments
This research was supported by funds from the NASA
Aviation Operations Safety Program and the Intelligent
Systems Program.

References
Anderson, J. R. (1983). The Architecture of Cognition.

Cambridge, MA: Harvard University Press.
Anderson, J. R. & Lebiere, C. (1998). The Atomic

Components of Thought. Lawrence Erlbaum
Associates.

Baskin, J. D., & John, B. E. (1998). Comparison of
GOMS Analysis Methods. Proceedings of ACM CHI
98 Conference on Human Factors in Computing
Systems (Summary) 1998 v.2 p.261-262.

Berkovich, M., J., & Kwong, E. (2002). Apex template
manual, working paper.

Card, S. K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Freed, M. (1998a) Managing multiple tasks in complex,
dynamic environments. In Proceedings of 15th
National Conference on Artificial Intelligence,
(Madison, Wisconsin,) Menlo Park, CA: AAAI
Press/ MIT Press. pp. 921-927.

Freed, M. (1998b) Simulating Human Performance in
Complex, Dynamic Environments. Doctoral
Dissertation, Northwestern University.

Freed, Michael and Remington, R. (2000) GOMS,
GOMS+ and PDL. In Working Notes of the AAAI
Fall Symposium on Simulating Human Agents.
Falmouth, Massachusetts.

Gray, W. D., John, B. E., & Atwood, M. E. (1993)
Project Ernestine: Validating a GOMS analysis for
predicting and explaining real-world task
performance. Human-Computer Interaction, 8, pp.
237-309.

John, B. E. (1990) Extensions of GOMS analyses to
expert performance requiring perception of dynamic
visual and auditory information. In proceedings of
CHI, 1990 (Seattle, Washington, April 30-May 4,
1990) ACM, New York, 107-115.

John, B. E., Vera, A. H., and Newell, A. (1994).
Towards real time GOMS: A model of expert
behavior in a highly interactive task. Behaviour and
Information Technology, 13, 4, pp. 255-267

John, B. E. (1996) TYPIST: A Theory of Performance
In Skilled Typing. Human-Computer Interaction , 11
(4), pp.321-355.

John, B. E. (1998) Cognitive modeling for Human-
Computer Interaction. Invited paper in the
Proceedings of Graphics Interface 98 (Vancouver,
British Columbia, Canada, June 18-20, 1998)
Canadian Human-Computer Communications
Society.

John, B. E. & Altmann, E. M. (1999). The power and
constraint provided by an integrative cognitive
architecture. Invited paper, Proceedings of the 2nd
international conference on cognitive science and the
16th annual meeting of the Japanese Cognitive
Science Society joint conference (July 27-30, 1999.
Tokyo, Japan). pp. 20-25.

John, B. E. & Gray, W. D. GOMS Analyses for Parallel
Activities. Tutorial materials, presented at CHI, 1992
(Monterey, California, May 3- May 7, 1992), CHI,
1994 (Boston MA, April 24-28, 1994) and CHI, 1995
(Denver CO, May 7-11, 1995) ACM, New York.

John, B. E. & Lallement, Y. (2000) A Demonstration
of Integrative Modeling of a Complex Dynamic
Computer-based Task. In Proceedings of the 2000
AAAI Fall Symposium on Simulating Human Agents,
November 3-5, 2000.

John, B. E., Vera, A. H., Matessa, M., Freed, M., &
Remington, R. (2002) Automating CPM-GOMS.
Proceedings of CHI, 2002 (Minneapolis, April 20-25,
2002) ACM, New York.

Kirwan, B. & Ainsworth, L. K. (Eds.) (1992). A guide
to task analysis. London, UK

Nelson, G. H., Lehman, J. F., & John, B. E. (1994)
Integrating cognitive capabilities in a real-time task.
Proceedings of the Sixteenth Annual Conference of
the Cognitive Science Society, August 1994. pp. 353-
358.

Newell, A. (1990). Unified Theories of Cognition.
Harvard Univers i ty Press . Cambridge,
Massachusetts.

Pelz, J.B. & Canosa, R. (2001) Oculomotor Behavior
and Perceptual Strategies in Complex Tasks, Vision
Research, 41:3587-3596.

